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ABSTRACT | Significant advances in the performance and

reliability of traveling-wave tubes (TWTs) utilized in amplifying

space communication signals for NASA missions have been

achieved over the last three decades through collaborative

efforts between NASA and primarily L-3 Communications

Electron Technologies, Inc. (L-3 ETI). This paper summarizes

some of the key milestones during this period and includes

development of TWTs for the Communications Technology

Satellite, Cassini, and Lunar Reconnaissance Orbiter missions.

Technical advances in computer modeling, design techniques,

materials, and fabrication have enabled power efficiency to

increase by almost 40% and the output power/mass figure-of-

merit to increase by an order of magnitude during this period.

KEYWORDS | Amplifiers; cathodes; microwaves; space commu-

nications; traveling-wave tubes

I . INTRODUCTION

The traveling-wave tube amplifier (TWTA), which consists

of a traveling-wave tube (TWT) mated with a high-voltage

power supply, has progressed from its beginnings in the

1940s [1], [2] to become today’s high-power amplifier of

choice for most satellite and deep-space communication

systems [3]. A schematic diagram of a TWT is shown in

Fig. 1. Amplification in a TWT is attained by guiding the

electromagnetic wave containing the communications

signal to travel along a slow-wave circuit (such as the

helix in this figure) in close proximity to an electron beam.

The electron beam is provided by an electron gun
consisting of a cathode, focusing electrodes, and an anode.

The electrons pass through the anode and are focused into

a cylindrical beam by a stack of periodic permanent

magnets. The beam travels within the slow-wave circuit at

a velocity close to that of the phase velocity of the

electromagnetic wave. Some of the electrons in the beam

are slowed by the electromagnetic field and some are

accelerated. This enables the beam to form into electron
bunches, which further interact with the electromagnetic

wave while surrendering kinetic energy. The result is an
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amplification of the communications signal power by a
gain factor on the order of 40–50 dB. After the electrons

pass through the helix, they impinge on electrodes in the

collector. By decelerating the electrons, the collector is

able to recover most of the remaining kinetic energy and

significantly increase the power efficiency of the TWT.

The primary advantages of TWTAs with respect to

solid-state power amplifiers (SSPAs) are their superior

power and efficiency capabilities especially at higher
microwave frequencies. While space SSPAs are typically

used in the lower frequency bands below 6 GHz with

radio-frequency (RF) powers of less than about 30 W,

space TWTAs are used at frequencies up to more than

60 GHz with much higher power capability [4]. Despite

common misperceptions, a recent data study by Boeing

Satellite Systems showed that the reliability of modern

TWTAs is also superior to that of SSPAs [5]. The study
compared data from 30.5 million on-orbit hours of 944

SSPAs to that of 80.5 million on-orbit hours of 1783

TWTAs over a 20-year period ending in April 2004.

Most of the SSPAs in this data set operated at L-band

through C-band, while most of the TWTAs operated in

the higher frequency Ku-band. Even with the higher

frequency and power operation of the TWTAs, their

reliability as expressed in failures in 109 h (FITs) was
superior to that of the SSPAs. Using a capability metric

of watt per rate of failure, the authors showed that

TWTAs provided nearly six times more performance

than SSPAs.

NASA and L-3 Communications Electron Technolo-

gies, Inc. (L-3 ETI, which was formerly known as Hughes

Aircraft Company Electron Dynamics Division and Boeing

Electron Dynamic Devices, Inc.) have played a significant
role in the performance improvement of space TWTAs

over the last three decades. Fig. 2 shows how the RF power

capability and efficiency of L-3 ETI Ka-band space TWTs

have improved over just the last 15 years. This paper will

document some of the advances by NASA and L-3 ETI in

design, computational modeling, and materials develop-
ment that contributed to the improvement in TWT

capabilities. In particular, we will discuss the areas of

cathodes, coupled-cavity and helix TWT modeling, multi-

stage depressed collectors (MDCs), and power combining.

II . CATHODES

Early TWTs used oxide cathodes, which were capable of
long lives but had significant reliability problems [6].

These problems were overcome with the development of

the M-type barium (Ba) dispenser thermionic cathode,

which is now the only cathode used as an electron

source in vacuum electron devices for space communica-

tions. (M-type refers to cathodes which have surface

coatings containing osmium to reduce the work function

and thus the operating temperature.) Thus this cathode
will be emphasized here, although a large variety of other

cathode types, both thermionic and nonthermionic, have

been investigated over the years at NASA. The main

emphasis has been to improve the understanding of the

operation of these cathodes, both experimentally and

theoretically, and to demonstrate reliability through

cathode life tests.

The most important experimental work consisted
primarily of electron emission and surface chemistry

studies of Ba and oxygen (O) absorbed on refractory metal

surfaces. These surfaces also contain the 5d transition

elements W, Os, Ir, and alloys thereof that are typical of Ba

dispenser cathodes. Surface analytical techniques such as

Auger electron spectroscopy, X-ray photoelectron spec-

troscopy [7], and inverse photoemission [8], [9] were used.

One of the significant results was the first characterization
of the chemical structure of Ba and O essential for

enhanced electron emission from tungsten (W) surfaces

[10]. The theoretical work consisted of the first application

of modern relativistic quantum chemistry to the study of

the electronic structure for the interaction of Ba and O

with the 5d transition metals [11]–[13]. A significant result

of this effort was the explanation as to why certain 5d

transition metals or alloys characteristic of M-type
cathodes (Os, Ir, W-Os) displayed a lower effective work

function with the adsorption of Ba and O than did pure W.

The reason was shown to be the surface crystal structure

(hexagonal-close-packed versus body-centered-cubic),

which enabled a stronger dipole interaction.

A very significant life test was performed under

contract to NASA at the Watkins–Johnson Company with

M-type cathodes, which have an osmium-ruthenium
coated barium impregnated tungsten matrix. The test

used open anode life test vehicles designed to simulate

operation in traveling wave tubes. Lifetimes of greater

than 100 000 h (11.4 y) of continuous operation at 1 and

2 A/cm2 were achieved, which demonstrated for the first

time the potential of this type of cathode for long-life

space applications [14].

Fig. 2. RF output power and overall efficiency improvement in

Ka-band space TWTs. Data shown are for the L-3 ETI 955H (Cassini),

999H, and 999HA models.
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The M-type barium dispenser cathode now used in all
U.S. manufactured space TWTs is an osmium ruthenium-

coated cathode produced by L-3 ETI in their recently

modernized and fully qualified cathode facility. This

cathode, when operated within appropriate limits of

temperature and emission current density, is highly

reliable and capable of lifetimes exceeding 15 y in space.

The reliability of this cathode was established after

extensive life testing and corroboration with models of
life expectancy [6].

Another barium dispenser cathode, the reservoir

cathode, with the capability of simultaneous high electron

current densities and very long life, was developed under a

contract with Varian Associates [15] and was the recipient

of an R&D 100 award in 1987. Reservoir cathodes life

tested at 2 and 4 A/cm2 have demonstrated unprecedented

stability and showed negligible degradation in electron
emission after more than 100 000 h [16]. An efficient

miniaturized version of the reservoir cathode has been

developed [17], [18] under the NASA Small Business

Innovation Research program.

III . COUPLED-CAVITY TWTs

Before 1976, satellite communication capabilities were
limited by the low power levels (4–20 W) available from

the space-borne traveling-wave tube amplifiers [19]. To

extend communications technology to much higher power

levels of transmission, the Canadian Department of

Communications and NASA initiated the joint develop-

ment of an experimental satellite designated the Commu-

nications Technology Satellite (CTS) in 1971 [20]. This

program enabled satellite communication systems to
provide enough power to broadcast directly to small,

low-cost individual end receivers rather than to ground

based distribution systems. For the first time communica-

tions links to different parts of Canada and the United

States were established.

The development of the 12-GHz CTS TWT took place

from 1972 to 1976. The Electron Tube Division of Litton

Industries designed the electron gun and slow-wave
circuit while NASA designed the spent beam refocuser

and multistage depressed collector (MDC) [21]. This

TWT, represented in Fig. 3 [22], incorporated several

important design features that had not previously been

used in space applications. These included:

1) an electron gun using a barium impregnated

tungsten cathode;

2) a high-power coupled cavity slow-wave circuit
with a velocity taper for high basic efficiency;

3) a beam refocusing section for conditioning the

spent beam for entry into the collector;

4) a NASA-designed ten-stage depressed collector for

high overall efficiency;

5) radiation cooling of the collector to minimize the

thermal load on the satellite system.

An overall efficiency of 44.5% to 50.6% was obtained
across the 12.04–12.12 GHz frequency band, the best

performance reported to that date for a TWT at any

frequency [22].

The 200-W CTS TWT demonstrated an increase in the

power of satellite-relayed signals by a factor of ten over

previous commercial satellite amplifiers and played a

major role in producing the technology that made satellite

television broadcasting practical. For its efforts, NASA
received an Emmy Award in 1987 from the National

Academy of Television Arts and Sciences [23]. The MDC

technology developed for the CTS TWT was also applied to

klystron power tubes used in ultra-high-frequency (UHF)

TV transmitters, doubling their efficiency and making it

possible for UHF stations to significantly reduce power

Fig. 3. Cross-sectional schematic of Communications Technology

Satellite TWT [22].
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consumption [24], [25]. This resulted in a second Emmy
Award, which was presented to the Public Broadcasting

System.1

In the 1970s, software and computational techniques

for vacuum electronics design were quite crude. The

design procedure for TWT components consisted of a large

number of design-build-test-redesign cycles, as evidenced

by the 32 builds required in the CTS program [22]. Since

then, there has been a considerable effort by the vacuum
electronics community in developing new software and

computational techniques. This has improved the TWT

design process to the point where it is now common for

new high-performance TWT models to perform as

predicted on the first build [26]. Both NASA and L-3 ETI

have contributed considerably to this advancement in

design capabilities. In this section, advancements in

coupled-cavity TWT slow-wave circuit design capabilities
will be outlined; in following sections, advancements in

the design capabilities of helix TWT slow-wave circuits and

MDCs will be documented.

The slow-wave circuit of the CTS TWT including the

two-step phase velocity taper was designed with a one-

dimensional coupled-cavity TWT code [27]. To more

accurately model the interaction between the electron

beam and the RF wave in the slow-wave circuit, NASA
developed a more accurate 2 1/2-dimensional (2 1/2-D)

(axisymmetric) coupled-cavity TWT code [28]–[32].

Utilizing the NASA coupled-cavity TWT model, an

algorithm designated the phase-adjusted taper was devel-

oped to design slow-wave circuits for increased power

efficiency [33], [34]. As a test case, the algorithm was

applied to the CTS TWT and resulted in a phase velocity

taper design that provided a computed RF efficiency
45% higher at center frequency than that of the original

CTS design. Since then, more generalized algorithms

based on the optimization technique of simulated

annealing have been developed for designing phase

velocity tapers in coupled-cavity slow-wave circuits for

optimizing center frequency efficiency [35], efficiency

over a wide frequency bandwidth [36], and efficiency for

high-frequency circuits where dimensional tolerances are
important [37].

To model the performance of a slow-wave circuit, the

NASA coupled-cavity TWT model requires the geometric

dimensions and cold test (absence of an electron beam)

parameters for each cavity. The cold test parameters,

which include the RF phase shift, interaction impedance,

and attenuation, were traditionally obtained experimen-

tally. In the early 1990s, techniques were developed to
calculate these parameters with three-dimensional (3-D)

electromagnetic codes [38], [39]. By combining these

techniques with the NASA coupled-cavity TWT code, it

was shown that RF output characteristics could be

accurately obtained computationally without dependence
on expensive and time-consuming experimental cold test

procedures [40]. These computational techniques made it

possible to investigate not only conventional coupled-

cavity TWTs but also helical TWTs (next section) and

novel circuits such as the TunneLadder TWT [41] and the

Finned-Ladder TWT [42].

IV. HELIX SLOW-WAVE TWTs

A TWT with a helix slow-wave circuit cannot provide as

much RF output power as one with a coupled-cavity circuit

but can have a much broader frequency bandwidth [43]. As

in coupled-cavity TWT circuits, phase velocity tapers are

commonly used to increase power efficiency. The dynamic

velocity taper is a velocity taper developed at NASA [44]

that not only increases power efficiency but also improves
the linearity of the output power with respect to the input

power [45]. This is important for reducing distortion in

communications applications.

As with coupled-cavity circuits, the development of 3-D

modeling techniques has enabled helix circuits to be

modeled accurately [46], [47]. These 3-D models have

helped to enable first-pass TWT design capabilities,

resulting in considerable savings in time and cost [48],
[49]. Additionally, they have enabled the investigation of

manufacturing tolerance effects on TWT performance [50],

magnetic focusing [51], and intersymbol interference [52].

The Ka-band TWT developed by Hughes Electron

Dynamics Division (now L-3 ETI) and NASA for the

Cassini mission to Saturn started out as a research project

to incorporate the newly developed helix and collector

design methods and to use textured electrodes in the
MDC [53], [54]. Textured electrodes are high-voltage

electrode stages that are roughened or Btextured[ to

produce spires or peaks with an average feature height and

separation of approximately 10 and 5 �m, respectively

[55]. The surface texturing suppresses secondary elec-

trons, which increases the current collected and improves

MDC efficiency. The TWT produced 10.7 W of RF output

at 32 GHz with an overall efficiency of 40.2%. The TWT
has been used in radio science experiments [56], a search

for gravitational waves [57], and an experiment to test

general relativity [58].

From 2001 to 2004, L-3 ETI (then Boeing Electron

Dynamics Devices, Inc), under a NASA contract, devel-

oped the 999H TWT model designed for deep space Ka-

band communications in the 31.8–32.2 GHz downlink

frequency band with a 12-y operating lifetime. This TWT
demonstrated 143.5 W of continuous-wave RF power with

60% overall efficiency, both records for Ka-band space

TWTs. Following the 999H TWT, L-3 ETI developed the

higher power Model 999HA TWT under another NASA

contract in 2004–2005 [26]. This Ka-band space TWT

shown in Fig. 4 was developed to provide high-rate high-

capacity direct-to-Earth communications for science data

1http://www.emmyonline.org/docs/engineering_award_winners_
rev3.pdf.
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and video from NASA deep space planetary orbiters with a

7-y operating lifetime. It has demonstrated 252 W of

continuous-wave output power over the 31.8–32.3 GHz

frequency band with 62% overall power efficiency. This

represents a 75% increase in power over the previous

999H model with a further improvement in overall
efficiency. Additionally, the TWT is operational over a

very wide frequency bandwidth of 9 GHz. This flexibility

will enable this TWT to be utilized for a large number of

future NASA deep-space missions. The key innovations in

this TWT include:

1) the design of a dual-anode isolated focus electron

gun, which enables excellent focusing over a wide

range of voltage and current values, providing the
flexibility of operation over a wide range of output

power;

2) the advanced design of the periodic permanent

magnet stack surrounding the slow-wave circuit,

which was also important in maintaining excellent

focusing of the electron beam;

3) the advances in computer modeling techniques

utilizing the U.S. Naval Research Laboratory’s
CHRISTINE 3-D code [59], which enables a high-

efficiency slow-wave circuit design that is stable

with respect to backward wave oscillations over a

wide range of input power levels;

4) the advances in computer modeling techniques

utilizing the U.S. Naval Research Laboratory’s

MICHELLE 3-D code [60], which enables a high-

efficiency four-stage depressed collector design,
resulting in improved conduction cooling and

thermal reliability;

5) the advanced design of the input and output

windows (through which the RF signals pass into

and out of the slow-wave circuit), which enables

the TWT to operate over a wide range of

frequencies;

6) redesigned high-voltage feedthroughs, which en-

able improved electromagnetic interference

shielding.
The result of these advances enabled the mass of the

999HA TWT to be decreased to only 1.5 kg, compared to

2.3 kg for the 999H TWT and 11.9 kg for the CTS TWT.

In addition, the need for a 1.2-kg Faraday cage for

electromagnetic interference shielding has been elimi-

nated. The L-3 ETI 999HA TWT was recognized with a

2006 R&D 100 Award. It is the baseline TWT from which

lower power Ka-band TWTs for the Kepler and Lunar
Reconnaissance Orbiter (LRO) are being designed.

Previous to the development of the L-3 ETI 999H and

999HA TWTs, the highest power Ka-band space TWT was

a 35-W model with an overall efficiency of 46%, which

was developed by Thales Electron Devices GmbH and is

currently flying on the NASA Mars Reconnaissance

Orbiter mission [61].

Future deep-space missions may require combining
TWTs to obtain even higher RF power. A high-efficiency

two-way power combiner waveguide circuit based on a

magic-T hybrid junction and two 100-W Ka-band helix

(Model 999H) TWTs was designed and developed as a

potential high-power RF source. Power-combining effi-

ciencies of over 90% and a high-data-rate capacity of

622 Mbps with quadrature phase-shift keying modula-

tion were demonstrated [62]–[64]. Fig. 5 [64] shows the
individual and combined RF powers over a 1-GHz

bandwidth. Several waveguide hybrid junction geometries

for greater power handling and transmission efficiency

have been designed [65].

Fig. 4. Photograph of L-3 ETI model 999HA Ka-band TWT.
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V. COLLECTORS

The fundamental purpose of the collector is to dispose of

the electron beam after it traverses an RF structure.

Originally the potential of the collector electrode was set

equal to or higher than the potential of the body (or RF

structure) of the tube. As early as 1940, it was shown that
by setting the collector electrode at potentials lower than

the beam voltage, or depressing the potentials, one can

increase overall efficiency [66]–[68]. The depressed

collector decreases the velocity of the electrons before

they strike the collector surface. This, in turn, produces

significant power savings by reducing the thermal load and

Brecovering[ power.

The success of the single stage depressed collector led
to the development of the multistage depressed collector

(MDC) [68]–[70], which resulted in further improve-

ments in overall efficiency. By using several symmetric or

asymmetric depressed electrodes, electrons are sorted by

velocity. The slowest electrons are collected at the highest

potential electrode, next slowest at the next highest

potential, and so on. By sorting electrons, there is a greater

chance for significant deceleration of the entire spent
electron beam. This process is also referred to as Bpower

recovery[ to describe the conversion of the electron

beam’s kinetic energy to potential energy as the electrons

slow down before hitting the collector.

The next significant leap in MDC design was due to the

advent of analog and digital computers. In a series of

contracts, NASA applied analog computers to MDC design

[71]–[73]. The dispersive lens collector (DLC) used in the
CTS TWT was created to provide one general design that is

applicable to many tube types and modulation levels by

changing only the individual aperture sizes [74]. As digital

computers became more powerful, they eventually sur-

passed analog computers as MDC design tools [75], [76].

Digital computers also gave the designer more freedom to

choose location, aperture size, and number of electrodes.

NASA pioneered the use of an axisymmetric ray tracing
code for 2 1/2-D MDC design that has been successfully

used since 1979 [76].

Despite its accuracy, the 2 1/2-D design method was

lacking in two areas. Since the ray-tracing code was

axisymmetric, it could only be applied as an approximation

to the analysis of asymmetric collectors. In addition, the

code was a steady-state solver that could not use any phase

space information associated with the spent beam mode.
To address these deficiencies, NASA pioneered the use of a

3-D particle-in-cell code that was typically used for

accelerator applications, in the analysis of MDCs [77].

While this method was computationally demanding, it

provided new insight in MDC operation and showed more

accuracy than the 2 1/2-D method.

The efficiency of collectors is affected by the material

of the collector and the secondary electron emission
properties of its surface. Secondary electrons are generally

divided into three groups: true secondaries, with energies

from near zero to several tens of electron volts;

inelastically scattered secondaries, with energies higher

than true secondaries but lower than the energy of the

incident electron beam; and elastically scattered (ener-

getic) secondaries, with energies near the energy of the

incident electron beam. All secondary electrons can
decrease collector performance. If a secondary electron

strikes an electrode, it increases the kinetic energy at that

electrode, thereby decreasing collector efficiency. Ener-

getic secondary electrons are particularly important

because their high energies give them a greater chance

of leaving the collector, reentering the slow-wave circuit,

and producing undesired signal distortion or oscillation.

To address these concerns, NASA investigated the
secondary emission properties of various materials for use

in collectors, including polished copper, textured copper,

and isotropic graphite. Traditionally, the most common

collector material has been copper. It has been chosen for

its mechanical properties and high thermal and electrical

conductivity. However, copper has the disadvantage of a

relatively high secondary electron yield for the electrons

scattered from the surface of the collector. Another
material that has been studied and used to manufacture

collectors is carbon, with various forms of carbon either

brazed or deposited on copper [78], [79]. Most forms of

carbon, including soot and pyrolytic carbon, have very

low yield of secondary electrons. This yield can be further

reduced with a texturing process [80]. During the Cassini

TWT development effort, it was shown that the TWT with

textured copper MDC electrodes consistently demon-
strated significantly higher (41.9%) overall efficiency than

the TWT having untreated copper electrodes (36.0%) and

somewhat higher than the TWT with graphite electrodes

(39.5%) [55]. NASA investigations also showed that

energetic secondary electrons have a complex angular

distribution that is strongly dependent on the energy and

angle of incidence of the electron beam, as well as the

Fig. 5. Individual and combined RF output power for two-way power

combiner waveguide circuit with a magic-T hybrid junction [64].
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atomic number and surface morphology of the material
[81]. These data provided a more complete and accurate

model of ESS electrons, enabling more simulation

accuracy and more insight into collector design.

VI. CONCLUSIONS

Significant advances in the performance and reliability of

traveling-wave tubes utilized in amplifying space commu-
nication signals for NASA missions have been achieved

over the last three decades through collaborative efforts

between NASA and primarily L-3 Communications Elec-

tron Technologies, Inc. There has been a tremendous
improvement in space TWTs from the 12-GHz 200-W CTS

coupled-cavity TWT in 1976 to the 32-GHz 250-W L-3

999HA helix TWT in 2006. With similar output power at a

higher frequency, the 999HA is 1.39 times as efficient with

a decrease in mass of almost a factor of eight. Because of

their high-power capability, high efficiency, and reliability

record, TWTs are expected to continue to be essential in

the foreseeable future for space communications.2 h
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